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Abstract In this paper, we prove the existence of infinite Gibbs Delaunay tessellations
on R

2. The interaction depends on the local geometry of the tessellation. We introduce a
geometric hardcore condition on small and large cells, consequently we can construct more
regular infinite random Delaunay tessellations.
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1 Introduction

The importance of the Gibbs point process as a model in the statistical analysis of spatial
point patterns is today widely recognized. Indeed, the class of Gibbs point processes is in-
teresting because it allows one to introduce and study interactions between points through
the modeling of an associated potential function. In [5–7] Bertin, Billiot and Drouilhet deal
with Gibbs point processes where the interaction depends on the structure of the Delau-
nay tessellation. More precisely, they consider the Delaunay triangulation in the space R

2

where the vertices are given by the point process and the interaction is built thanks to the
triangles of this tessellation. It is a functional from the local geometry of the Delaunay tes-
sellation. This produces, for the classical point of view, an infinite multibody interaction
(see [9, 16, 17]). In [5], they study the finite volume case. They develop some algorithms
to simulate these Gibbs tessellations and give some applications for the modeling of the
cells of the prostatic tissue. In [6, 7], they prove the existence of some infinite Gibbs states.
The results are proved in the classical context of the Gibbs point process using Preston’s
well-known Theorems (see [14]).

The concept of random simplicial complexes, including simplicial surfaces or networks,
is widely developed in Mathematics and Physics (see [19, 21]). In this context of random
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geometry, Zessin in [21] proposes a purely geometric approach to Gibbs simplicial com-
plexes, the objective being the problem of the pure quantum gravity (see [21] for many
references). Typically, the interaction potential is a functional from the local intrinsic geom-
etry defined in terms of invariants, such as the volume and the curvature. The main difficulty
of such a theory is how to define this reference measure which should be a random simpli-
cial complex without interaction. In the classical context of point processes, the reference
measure is obviously the Poisson point process. But for the random simplicial complexes,
the question is open. Moreover, even if we have a natural reference measure for random
simplicial complexes, we have to describe the local laws of this measure given the outside
configuration to obtain the classical DLR equations.

The objective of this paper is the development of a purely geometric description of the
random Gibbs simplicial complexes, built on the Delaunay tessellations. Our work is a con-
tinuation of the results of Bertin, Billiot and Drouilhet in [5–7] in the context of the sim-
plicial complexes inspired by Zessin. Indeed, we use his point of view to define the energy
from the local intrinsic geometry of the tessellation. Moreover, we propose a new and more
sophisticated description of the local densities which is more compatible with the geometry
of the tessellation than in the classical case. Let us give an example to illustrate these no-
tions. Let us suppose that the energy is concentrated on the triangles of the tessellation, so,
for a tessellation Γ and for a bounded window Λ in R

2 we define the energy of Γ in Λ

EΛ(Γ ) =
∑

X∈Γ,X∩Λ�=∅
V (X), (1)

where the sum is for all triangles X in Γ such that X intersects Λ. V (X) is the energy of
triangle X. Now, the reference measure P is just the random Delaunay tessellation for which
the random vertices are given by a Poisson process. The DLR equation on Λ is consequently
obtained thanks to the local laws of P , given all the triangles outside of Λ or crossing
the boundary, for which we add the classical density 1

ZΛ
e−EΛ(Γ ). The DLR equations in

[5–7] are different and simpler because they are in the context of classical Gibbs point
processes. We think however that our approach is more natural for the physical point of
view since our descriptions of the local laws are directly focused on the intrinsic geometry
of the tessellation.

Thanks to this new approach, in Theorem 1 Sect. 3, we have improved a result in [6]. In-
deed, using some ideas from Schreiber in [18] to control the convergence of the finite volume
Gibbs tessellations and the locality of the tessellations, we relax an assumption of quasilo-
cality for the interaction. In the classical context of Gibbs point processes, this assumption
is natural because the interaction of a configuration goes to zero when the diameter goes to
infinity. In the context of Gibbs Delaunay tessellations, it is not however natural because the
energy of a cell is in general not bounded (sometimes equal to plus infinity) when the size of
the cell goes to infinity. For example, in the pure quantum gravity evoked below, the energy
is equal to the curvature minus the local volume which is completely unbounded, when the
cells become large. So, it is a really progress to have relaxed this quasilocality assumption.

The proof of Theorem 1 is general and can be applied to many cases of random in-
teracting tessellations. In Sect. 4, we extend our result to the case of geometric hardcore
interactions. Indeed, we use our techniques to obtain interesting results in stochastic geom-
etry. Let us suppose that we want to build some random tessellations whose cells are neither
too small nor too large. The energy of a triangle is equal to infinity if this triangle is small
or large. For example, we put V (X) in (1) equals to plus infinity if the radius of the circum-
scribed ball of X is smaller than r or bigger than R, where r and R are two positive fixed
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constants. The Gibbs Delaunay tessellations that we construct in Theorem 2 are therefore
more regular than the reference measure P since with probability one there is no small and
large cell. Thanks to the DLR equations, we can say that these Gibbs Delaunay tessellations
are the most natural random Delaunay tessellations without small and large cells. Finally,
let us remark that this kind of hardcore interaction is not authorized in the classical point
of view because it is not hereditary. Indeed, let us imagine a tessellation containing a large
triangle (the energy is equal to infinity) and let us add a point inside this triangle. So, that
it is possible for the energy to become finite. This kind of situation is completely forbidden
in the classical case (see Assumption I4 in [17]). Our methods allow us to deal with the non
hereditary case.

2 Definitions and Notations

2.1 State Spaces

If X denotes a Polish space endowed with the Borel σ -algebra σ(X), then B(X) is the set
of bounded sets of X. M(X) is the set of the integer-valued measures Γ on X such that,
for every Λ ∈ B(X), Γ (Λ) ∈ N. M(X) is endowed with the σ -algebra σ(M(X)) generated
by the sets {Γ ∈ M(X),Γ (Λ) = n}, n ∈ N

∗, Λ ∈ B(X). Any measure Γ ∈ M(X) has the
following representation

Γ =
∑

i∈I
δXi

,

where I is a subset of N, (Xi)i∈I are elements of X and δX is the Dirac measure at X. We
write X ∈ Γ if Γ ({X}) > 0. Γ is said simple if for every X ∈ Γ , Γ ({X}) = 1.

In our case, X sometimes denotes R
2 endowed with the Euclidean metric, and sometimes

the space E defined below. So, we note M(R2) the space of integer-valued measures in R
2

and γ denotes a typical element in M(R2). We are interested in a much smaller space than
M(R2) containing only the integer-valued measures associated to the Delaunay tessellation.
More precisely, we note

MD(R2) =
{

γ ∈ M(R2) such that
– four points of γ are not on a same circle

– any half plane in R
2 contains some points of γ

}
.

We note E the space

E =
{

A ⊂ R
2 such that

– 1 ≤ Card(A) ≤ 3

– A is affinely independent

}
.

Three points are affinely independent if they are not on a same line. In the other cases, it is
always true. We note E (1) := {A ∈ E, card(A) = 1} the space of vertices in R

2, E (2) := {A ∈
E, card(A) = 2} the space of edges in R

2 and E (3) := {A ∈ E, card(A) = 3} the space of
triangles in R

2. The space E is endowed with the distance dE defined below. For X,Y ∈ E
we note X ⊂ Y if X is a subset of Y .

For X,Y ∈ E , we define N(X) = Card(X) and

dE(X,Y ) =
{+∞ if N(X) �= N(Y ),

max(supx∈X infy∈Y |x − y|, supy∈Y infx∈X |x − y|) if N(X) = N(Y )
(2)



130 D. Dereudre

where |.| denotes the Euclidean norm in R
2. It is easy to verify that dE is an distance on E .

(E, dE) is a separable metric space but it is not complete. Consequently, we note Ē a com-
pletion of E for the metric dE and dĒ the extended metric on Ē . We define M(E) the space
of integer-valued measures in E and Γ denotes a typical element in M(E). For Γ ∈ M(E)

and k = 1,2 or 3 we note

Γ (k) =
∑

X∈Γ

N(X)=k

δX.

Let us now define the space of the Delaunay tessellations. For every X ∈ E (3), we note B(X)

the open circumscribed ball of X and B̄(X) the closure of B(X).
Γ ∈ M(E) is a Delaunay tessellation if

(i) Γ (1) is in MD(R2)

(ii) for every X ∈ Γ for every Y ⊂ X then Y ∈ Γ

(iii) for every Y ∈ Γ (1) ∪ Γ (2), there exist two elements X,X′ ∈ Γ (3) such that Y ⊂ X,
Y ⊂ X′

(iv) for every X ∈ Γ (3), Γ (1)(B(X)) = 0.

We note MD(E) the space of the Delaunay tessellations.
The conditions (ii), (iii) give to Γ the structure of simplicial complex (for more details,

see [20]). The property (iv) is a typical property for the Delaunay tessellation (see [12]).
Let us remark that a Delaunay tessellation is uniquely and completely determined by

Γ (1) (see [12]). So for every γ ∈ MD(R2) we denote by γ̄ the unique Delaunay tessellation
Γ in MD(E) such that Γ (1) = γ .

For every X ∈ E , we note 〈X〉 the convex hull of X in R
2 and for every Γ ∈ M(E) we

note 〈Γ 〉 = ⋃
X∈Γ 〈X〉. Let us remark that for every Γ ∈ MD(E), 〈Γ 〉 = R

2. Let Γ,Γ ′ are
in M(E), we note Γ ′ ≺ Γ if the measure Γ ′ is absolutely continuous with respect to Γ . In
fact, Γ ′ ≺ Γ if for every X in Γ ′ then X is in Γ .

2.2 Interaction

In this section, we define the energy of finite connected configurations. At this stage, we
do not give the necessary assumptions in the following theorems to prove the existence of
Gibbs Delaunay tessellations. Until the end of the paper, the fixed integer p is the maximum
number of cells for a typical interacting configuration. More precisely, we note

Sp(E) =
{

Γ ∈ M(E) such that
– Γ (E) ≤ p

– 〈Γ 〉 := ⋃
X∈Γ 〈X〉 is a connected set

}
.

Let us remark that an element Γ in Sp(E) does not satisfy in general the assumptions (i),
(ii), (iii), (iv). An interaction potential V is a measurable function

V : Sp(E) −→ R ∪ {+∞}.
Now, we can define the local energy of an infinite Delaunay tessellation. Let Λ be a bounded
set in B(R2) and Γ a Delaunay tessellation in M(E). We define the energy of Γ inside Λ

with the following definition

EΛ(Γ ) =
∑

Γ ′≺Γ

Γ ′∈Sp(E)

〈Γ ′〉∩Λ�=∅

V (Γ ′). (3)
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Fig. 1 An example of a
Delaunay tessellation

It can be seen that the sum above is finite thanks to the locality of the Delaunay tessella-
tion. Since Γ is determined by γ , we can define the energy of γ inside Λ by the simple
formula EΛ(γ ) := EΛ(γ̄ ). We use the same notation for the energy of Γ in Λ and the
energy of γ in Λ. We note M∞

D (R2) (respectively M∞
D (E)) the subset of MD(R2) (respec-

tively MD(E)) such that the configurations γ (respectively Γ ) have a finite local energy
EΛ(γ ) < +∞ (respectively EΛ(Γ ) < +∞) for all Λ ∈ B(R2).

This definition of the energy is similar to the one given in [20].

2.3 The Reference Measure and the Local Specifications

We note λ the Lebesgue measure on R
2, π denotes the Poisson Process on R

2 with inten-
sity λ. It is a probability measure on M(R2). For every Λ ∈ B(R2), πΛ denotes the Pois-
son process on Λ with intensity 1Λλ. We note π̄ the natural Poisson Delaunay tessellation
which is the image of π to MD(E) by the application γ �→ γ̄ . π̄ is a Probability measure on
MD(E) and is the reference process for the Gibbs tessellations. It can be seen as the random
Delaunay tessellation without interaction. In fact, we want to construct Gibbs Delaunay tes-
sellations which are locally absolutely continuous with respect to π̄ . The local density is
given by local specifications that we are currently defining.

First, let us explain how the reference measure π̄ satisfies the local conditioning. In the
classical continuous case, π is the reference measure and consequently local conditioning
is trivial. For every Λ ∈ B(R2), the process γ under π has two independent parts γΛ (the
projection of γ inside Λ) and γΛc (the projection of γ outside Λ). In our case, it is more
complicated, because the inside and outside of under π̄ are not independent. Moreover what
exactly are the inside and outside of Λ? There are many different ways of defining them.
In [5–7], only the points of Γ (1) are considered. So, the inside and outside are clearly and
easily defined but they lose the structure of the tessellation near the boundary of Λ because
a triangle in Λc which has a circumscribing ball intersecting Λ disappears if you add a point
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Fig. 2 An example of
configuration ΓΛc

at Γ (1) in Λ and in this ball. Consequently, the tessellation is not stable near the boundary
and there is an influence of points inside of Λ on the tessellation outside of Λ.

In our case, we prefer to keep the structure of the Delaunay tessellation completely out-
side of Λ. More precisely, we have the following definition.

Let Λ be in B(R2) and Γ ∈ MD(E), we note ΓΛc the process

ΓΛc =
∑

X∈Γ

∃Y∈Γ (3), X⊂Y

〈Y 〉∩Λc �=∅

δX. (4)

In fact, ΓΛc corresponds to the part of the Delaunay tessellation Γ which intersects the
outside of Λ. Let us remark that every X ∈ ΓΛc does not necessary satisfy 〈X〉 ∩ Λc �=
∅ but it is contained in a triangle Y which satisfies it. We have in Fig. 2 an example of
configuration ΓΛc .

In the following proposition we identify the law of Γ under π̄ given ΓΛc . Let us define
before the set SΛ(Γ ) in R

2

SΛ(Γ ) = R
2\

( ⋃

X∈Γ
(3)

Λc

B̄(X)

)
(5)

and the function Υ

Υ : MD(E) ×M(R2) × B(R2) −→ MD(E),

(Γ, γ,Λ) �−→ (Γ
(1)

SΛ(Γ )c + γSΛ(Γ )).

With this definition, Υ (Γ,γ,Λ) is not correctly defined if Γ
(1)

SΛ(Γ )c + γSΛ(Γ ) is not in

MD(R2) ( it is possible if Γ
(1)

SΛ(Γ )c + γSΛ(Γ ) has four points on the same circle). In this
case, we put Υ (Γ,γ,Λ) = Γ .
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Fig. 3 An example of set
SΛ(Γ ) represented as the dark
area

The function Υ extends the partial Delaunay tessellation ΓΛc inserting the points of γ

inside SΛ(Γ ) and completing the Delaunay structure.

Proposition 1 Let Λ be a bounded set in R
2. Then, for every bounded measurable func-

tion f we have
∫

MD(E)

f (Γ )π̄(dΓ ) =
∫

MD(E)

∫

M(R2)

f (Υ (Γ,γ,Λ))πSΛ(Γ )(dγ )π̄(dΓ ). (6)

Proof We have for all Λ in R
2 and all f,g measurable bounded functions on M(E)

∫

MD(E)

f (Γ )π̄(dΓ ) =
∫

M(R2)

f (γ̄ )π(dγ )

=
∫

M(R2)

∫

M(R2)

f (γ̄ )π(dγ |γ̄Λc = γ̄ ′
Λc )π(dγ ′).

Since Υ (Γ,γ,Λ) depends only on ΓΛc and γSΛ(Γ ), we have
∫

MD(E)

g(ΓΛc )f (Γ )π̄(dΓ )

=
∫

M(R2)

∫

M(R2)

f (Υ (γ̄ ′, γ,Λ))π(dγ |γ̄Λc = γ̄ ′
Λc )π(dγ ′)

=
∫

MD(E)

∫

M(R2)

f (Υ (Γ,γ,Λ))π(dγ |γ̄Λc = ΓΛc)π̄(dΓ )

=
∫

MD(E)

∫

M(R2)

f (Υ (Γ,γ,Λ))π(dγ |γSΛ(Γ )c = Γ
(1)

SΛ(Γ )c )π̄(dΓ )

=
∫

MD(E)

∫

M(R2)

f (Υ (Γ,γ,Λ))πSΛ(Γ )(dγ )π̄(dΓ ).

The proposition is proved. �
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This proposition gives the conditional law under π̄ of Γ given ΓΛc . It is the first step in
defining the D.L.R. equations. This description of π̄ given ΓΛc gives us a natural description
of the local law of π̄ and we will base our Gibbs structure on this result. It is not really
new because it is in the spirit of the geometric Gibbsian structure for the Arak processes
(see [1–3]) and it is suggested by Zessin in [20] to obtain a purely geometric description
of kernels for Gibbs simplicial complexes. Let us now give the local specifications with
interaction. For every Λ ∈ B(R2), we define the kernel ΞΛ on M∞

D (E) × P(M∞
D (E)). So,

for every Γ ∈ M∞
D (E) and every bounded continuous function f from M∞

D (E) to R we
define

ΞΛ(Γ,f ) =
∫

M(R2)

f (Υ (Γ,γ,Λ))
1

ZΛ(Γ )
e−EΛ(Υ (Γ,γ,Λ))πSΛ(Γ )(dγ ), (7)

where ZΛ(Γ ) is the normalization constant

ZΛ(Γ ) =
∫

M(R2)

e−EΛ(Υ (Γ,γ,Λ))πSΛ(Γ )(dγ ).

We have to justify that the constant ZΛ(Γ ) is finite and not null for all Γ ∈ M∞
D (E). Since

that depends on the interaction V , this will be proved later when we introduce precisely the
assumptions on V . In fact that comes from the stability of V and a hardcore property. We
have to extend the definition of ΞΛ(Γ, .) in the case where SΛ(Γ ) = ∅. In this case, we put
ΞΛ(Γ,f ) = f (Γ ) and the probability measure ΞΛ(Γ, .) is in fact δΓ .

Now, the family of kernel (ΞΛ)Λ∈B(R2) is a specification if the kernels are compatible.
It means that for every bounded measurable function f on MD(E), every Γ in M∞

D (E) and
every Λ,Λ′ in B(R2) such that Λ ⊂ Λ′ then

∫

MD(E)

∫

MD(E)

f (Γ ′′)ΞΛ(Γ ′, dΓ ′′)ΞΛ′(Γ, dΓ ′) =
∫

MD(E)

f (Γ ′)ΞΛ′(Γ, dΓ ′). (8)

In general this fact is obvious in statistical mechanics; that comes from the additivity of the
energy. But in our case the space state and interaction are a little different, we prefer to give
a brief validation of this result.

Proposition 2 The kernels (ΞΛ)Λ∈B(R2) are compatible.

Proof Let Λ,Λ′ ∈ B(R2), Γ ∈ M∞
D (E) and f a bounded measurable function on MD(E).

We suppose Λ ⊂ Λ′. So, we have

ΞΛ′(Γ,f ) =
∫

MD(E)

[∫

MD(E)

f (Γ ′′)ΞΛ′(Γ, dΓ ′′|Γ ′′
Λc = Γ ′

Λc )

]
ΞΛ′(Γ, dΓ ′)

=
∫

MD(E)

[∫

MD(E)

f (Γ ′′)
(

1

ZΛ′(Γ )
e−EΛ(Γ ′′)−(EΛ′ (Γ ′′)−EΛ(Γ ′′))Ξ 0

Λ′

)

× (Γ, dΓ ′′|Γ ′′
Λc = Γ ′

Λc )

]
ΞΛ′(Γ, dΓ ′),

where (Ξ 0
Λ)Λ∈B(R2) are the kernels without interaction (V = 0) and with the convention

EΛ′(Γ ′′)−EΛ(Γ ′′) = 0 if EΛ′(Γ ′′) = +∞ and EΛ(Γ ′′) = +∞. Thanks to the Proposition 1

Ξ 0
Λ′(Γ, dΓ ′′|Γ ′′

Λc = Γ ′
Λc ) = Ξ 0

Λ(Γ ′, dΓ ′′).
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So, we have

ΞΛ′(Γ,f ) =
∫

MD(E)

[∫

MD(E)

f (Γ ′′)
1

ZΛ′(Γ )
e−EΛ(Γ ′′)−(EΛ′ (Γ ′′)−EΛ(Γ ′′))Ξ 0

Λ(Γ ′, dΓ ′′)
]

×
[∫

MD(E)

1

ZΛ′(Γ )
e−EΛ(Γ ′′)−(EΛ′ (Γ ′′)−EΛ(Γ ′′))Ξ 0

Λ(Γ ′, dΓ ′′)
]−1

ΞΛ′(Γ, dΓ ′).

Since EΛ′(Γ ) − EΛ(Γ ) and ZΛ′(Γ ) depend only on ΓΛc , we have

ΞΛ′(Γ,f ) =
∫

MD(E)

[∫

MD(E)

f (Γ ′′)
1

ZΛ(Γ ′)
e−EΛ(Γ ′′)Ξ 0

Λ(Γ ′, dΓ ′′)
]
ΞΛ′(Γ, dΓ ′)

=
∫

MD(E)

[∫

MD(E)

f (Γ ′′)ΞΛ(Γ ′, dΓ ′′)
]
ΞΛ′(Γ, dΓ ′).

The proposition is proved. �

Now we can define the Gibbs Delaunay tessellations.

Definition 1 A probability measure μ on MD(E) is a Gibbs Delaunay tessellation for the
interaction potential V if, for every bounded set Λ in B(R2) and every bounded measurable
function f from MD(E) to R, we have

∫

MD(E)

f (Γ )μ(dΓ ) =
∫

MD(E)

∫

MD(E)

f (Γ ′)ΞΛ(Γ,dΓ ′)μ(dΓ ). (9)

The equations (9) are called DLR equations (Dobrushin, Landford, Ruelle), they gener-
alize the equations (6) in the case with interaction. It is equivalent to: for μ almost every Γ ,
every bounded set Λ in B(R2) and every bounded measurable function f from MD(E) to R

μ(f |ΓΛc ) = ΞΛ(Γ,f ).

3 Existence of Gibbs Delaunay Tessellations without Hardcore Condition

In this section, our results are a direct extension of the results in [6]. In this paper, the
authors prove the existence of Gibbs Delaunay tessellations for an interaction on the finite
configurations, which is null if the configuration is included in a triangle having a minimal
angle smaller than a fixed angle α0 > 0. Moreover, they assume the quasilocality of the
interaction. It means that the interaction goes to zero when the diameter of the configuration
goes to infinity. With these two assumptions, they can use the Preston theorem (see [14]) to
prove the existence of Gibbs Delaunay tessellations (see p. 727 in [6] and p. 899 in [7]). In
Theorem 1, we generalize this result by relaxing the quasilocality assumption.

Our methods in this paper are completely different. Firstly, the Gibbs Delaunay tessel-
lations concept is different. Nevertheless, in the case without hardcore interactions we can
prove that their concept, which is purely a point process concept, and our concept of Gibbs
Delaunay tessellations, which is more geometric, are equivalent. It will not be the case in
the next section. Secondly, we do not use Preston’s Theorems because they require a uni-
form quasilocality assumption on the kernels. In [6, 7], the quasilocality of the interaction
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guarantees this assumption. With our methods, the locality of the Delaunay tessellations is
sufficient.

Let us define the assumptions on V in this case without hardcore. We suppose until the
end of this section that V satisfies the following assumptions.

(TI): The translation invariant condition

∀h ∈ R
2, ∀Γ ∈ Sp(E) V (τhΓ ) = V (Γ ),

where τh is the shift operator for the vector h ∈ R
2. Now, let us give the assumption which

assures that V does not have a hardcore part.
(F): The finite energy condition

∀Γ ∈ Sp(E), V (Γ ) < +∞.

Let X be a triangle in E (3), we note α(X) the smallest angle in X. Let us now define a
condition about the support of V .
(S): The support condition
there exists α0 > 0 such that for every Γ in Sp(E).

V (Γ ) �= 0 �⇒ ∀X ∈ Γ ∃Y ∈ Γ (3) such that X ⊂ Y and α(Y ) > α0.

(S) means that V only charges the configurations Γ which do not have too flat triangles.
The interaction potential is bounded if
(B): The bounded condition
∃M > 0, ∀Γ ∈ Sp(E), then V (Γ ) < +∞ �⇒ |V (Γ )| ≤ M .
There is a last assumption about the regularity of V .
(R): The regular condition
V is π a.s. continuous. This means there exists Ω ⊂ MD(E) with π(Ω) = 1 such that for
every Γ ∈ Ω , every Γ ′ ≺ Γ in Sp(E), V is continuous at Γ ′.

Now, let us give some remarks and consequences of these assumptions.
(TI) is needed because we study only invariant translation Gibbs Delaunay tessellations.

Moreover, we need this invariant translation to construct the Gibbs tessellation and to control
the convergence of the finite volume Gibbs tessellations. The conditions (S) and (B) are the
same as in [6]. From a theoretical point of view, they are strong but from a practical point
of view, they are very weak because we can choose α0 very small and M very large. The
condition (R) is a little technical but it is satisfied for every natural interaction. This condition
is not needed in [6].

If the interaction V satisfies (F), we can define the energy of point x in a configuration γ .
Let x ∈ R

2 and γ ∈ MD(R2) such that γ + δx is in MD(R2). Then, we define the energy of
the point x in γ by the following formula

E(x,γ ) =
∑

Γ ′≺γ+δx

Γ ′
⊀γ

V (Γ ′) −
∑

Γ ′≺γ

Γ ′
⊀γ+δx

V (Γ ′). (10)

Let us remark that there is only a finite number of summands in each of the sums above. So,
thanks to this definition we have

EΛ(γ ) = EΛ(γΛc ) +
k∑

i=1

E(xi, γΛc + δx1 + · · · + δxi−1), (11)
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where γΛ = δx1 + · · · + δxk
.

Let us remark that the definition of kernels (ΞΛ)Λ⊂R2 in (7) would be exactly the same (in
the case where V satisfies (F)) if we substituted EΛ(γ ) with the cumulated sum of the energy
(i.e. the second part in the right term in equality (11)) because EΛ(γΛc ) is a constant. This is
the reason for which the techniques used in this section are based partially on classical tools
for the point processes. For instead, we will use the reduced Campbell measure on M(R2)

that we remind below.
Let P be a probability measure on M(R2), we define the reduced Campbell measure C !

P

on M(R2) × R
2 by

C!
P (f ) =

∫ ∫
f (x, γ − δx)γ (dx)P (dγ ),

where f is a bounded measurable function from M(R2)×R
2 to R. Now let us give the first

Theorem.

Theorem 1 For any α0 > 0, there exists a Gibbs Delaunay tessellation for a potential V

which satisfies (TI), (F), (S), (B) and (R).

Proof First of all, we have to prove that the kernels (ΞΛ) (see (7)) are well defined. Let
us show that 0 < ZL(Γ ) < +∞ for every Γ ∈ M∞

D (E). The definition of ZΛ(Γ ) is (we
suppose that SΛ(Γ ) �= ∅)

ZΛ(Γ ) =
∫

M(R2)

e−EΛ(Υ (Γ,γ,Λ))πSΛ(Γ )(dγ ).

Since there is no hardcore, it is obvious that ZΛ(Γ ) > 0. Now, we are going to prove the
stability.

Let x be in Γ (1) and Γ ′ ≺ Γ be in Sp(E) such that V (Γ ′) �= 0. Thanks to the assumption
(S), Γ ′ is included, at the maximum, in p connected triangles each having angles bigger
than α0. The number of such p connected triangles configurations in Γ with large angles
containing x is bounded by C := (p 2π

α0
)p . This controls the first sum of the energy E(x,Γ (1))

defined in (10) since |V (.)| ≤ M (M coming from the assumption (B)). For the second part,
let us point out that the number of triangles X ∈ Γ (1) − δx such that α(X) > α0 and X /∈ Γ

is bounded by 2π
α0

(see Proposition 3 in [7]). So the number of configurations Γ ′ ∈ Sp(E)

included in Γ (1) − δx and not included in Γ such that V (Γ ) �= 0 is also bounded by the
constant C. We deduce that |E(x,γ )| is bounded by 2MC and the interaction V is stable.
ZΛ(Γ ) is finite and nonnull.

Now, the proof of the theorem can be sketched into two parts. The first is to find and
construct a probability measure μ in MD(E) that will be a good candidate to become a
Gibbs measure. So we define the bounded periodic Gibbs tessellation μn associated to the
potential V and prove the convergence of these measures to a measure μ. Afterwards, in a
second part we show that μ satisfies the DLR equations characterizing the Gibbs structure.
In this second part, we have to prove essentially that the kernels (ΞΛ)Λ∈B(R2) are continuous
for μ almost every Γ with respect to the topology that we use.

Let us now define the stationary periodic Gibbs tessellation.
Let Λn be the bounded set [−n,n]2 ⊂ R

2. We define the stationary periodic Gibbs tes-
sellation μn for every n ∈ N

∗ on Λn. In general, the periodic Gibbs measure is defined on a
torus. We prefer to define it on the space MD(E) with periodic configurations. Let us now
introduce some notations.
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For every x ∈ R
2, we note pn(x) the configuration

∑
h∈2nZd δx+h. For every γ ∈ M(Λn)

we note pn(γ ) the periodic configuration pn(γ ) = ∑
x∈γ pn(x). An element Γ in MD(E)

is called n-periodic if, for every h ∈ 2nZ
d , τh(Γ ) = Γ . We clearly see that for every γ ∈

M(Λn), pn(γ ) is n-periodic.
Now, for every Γ ∈ MD(E), we define an equivalence relation on {Γ ′ ∈ Sp(E) such that

Γ ′ ≺ Γ } by : Γ ′ and Γ ′′ are equivalent if there exists h ∈ 2nZ
d such that τh(Γ

′) = Γ ′′. We
note Tn(Γ ) the set of equivalence classes, an element in Tn(Γ ) is noted Γ̃ ′ with Γ ′ ≺ Γ .

For two different elements Γ ′ ≺ Γ and Γ ′′ ≺ Γ in Sp(E) such that Γ̃ ′ = Γ̃ ′′, we have
V (Γ ′) = V (Γ ′′) since V satisfies (TI). Consequently we can define the periodic energy of a
n-periodic configuration Γ ∈ MD(E) in a volume Λ ⊂ Λn by

En
Λ(Γ ) =

∑

Γ̃ ′∈Tn(Γ )

〈Γ ′〉∩Λ�=∅

V (Γ ′). (12)

Let us now define the periodic Gibbs Delaunay tessellation μn: for every positive bounded
function f from MD(E) to R we have

∫

MD(E)

f (Γ )μn(dΓ ) =
∫

M(Λn)

1

Zn

f (pn(γ ))e
−En

Λn
(pn(γ ))

πΛn(dγ ), (13)

with Zn = ∫
M(Λn)

e
−En

Λn
(pn(γ ))

πΛn(dγ ). If γ = 0 or γ = δx then we put pn(γ ) = 0 and

En
Λn

(pn(γ )) = 0. Let us remark that Zn is finite for all n ∈ N
∗ because V is stable; see the

calculus above.
First step, convergence of (μn):
Let us look at precisely the convergence concept. The converge of the probability mea-

sures μn is for the weak topology on P(M(E)) where the topology on M(E) is induced
by the metric dM(E). dM(E) is the associated metric for the vague topology on M(E), E
being endowed by the metric dE defined in (2). See for example [8] p. 607 for an appendix
about the topology of the convergence of measures and [11] p. 108 for the convergence of
integer-valued measures.

Let us begin by analyzing the metric dE and remembering that the set E is not a complete
space. So, for the moment, we have to define the convergence in Ē for which we have
the extended metric dĒ . dĒ(X) is defined by the limit of dE(Xn), when n goes to infinity,
and for any set (Xn) which tends to X. So, a set (Xn)n∈N∗ ∈ EN

∗
converges to an element

X ∈ Ē if, and only if, there exists n0 in N
∗ such that ∀n ≥ n0, N(Xn) = N(X) and we can

write Xn like {xn} or {xn, yn} or {xn, yn, zn} (idem for X, {x} or {x, y} or {x, y, z}) with
limn→∞ xn = x, limn→∞ yn = y, limn→∞ yn = y.

Next, let us look at the metric dM(Ē) (for a precise definition, we can see [11] pp. 108–
109). A set of measures (Γn) ∈ M(E)N

∗
converges to Γ ∈ M(Ē) if, and only if, for every

open bounded set Λ ⊂ Ē , there exists ε > 0 and n0 ∈ N
∗ such that for all n ≥ n0 Γn(Λ

ε) =
Γ (Λε) = Γ (Λ) with

Λε = {X ∈ Ē such that B(X,ε) ⊂ Λ}.
Moreover, we can write (Γn)Λε = ∑Γ (Λ)

k=1 δXn
k
, ΓΛε = ∑Γ (Λ)

k=1 δXk
, and we have limn→∞ Xn

k =
Xk for every 1 ≤ k ≤ Γ (Λ) . The set Λε is introduced to control the boundary effects which
can appear if the configurations Γn have points near the boundary of Λ. The convergence
of Γn to Γ for the metric dM(Ē) is equivalent to the convergence for the vague topology on
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M(Ē). It means that for every bounded nonnegative continuous function f on Ē , which is
identically null outside of suitable bounded set of Ē , we have

lim
n→∞

∫

Ē
f (X)Γn(dX) =

∫

Ē
f (X)Γ (dX).

Proposition 3 The probability measures (μn)n∈N∗ on MD(E) converge for a sub set to
a shift invariant probability measure μ on M(E). Moreover μ-almost every Γ ∈ M(E)

satisfies the condition (i′), (ii), (iii), (iv), where (i′) is (i′) Γ (1) is in MD(R2) or Γ = 0.
Moreover,

μ(Γ (1) ∈ MD(R2)) > 0. (14)

Proof This proposition is the main result finding of this first part of the proof of Theorem 1.
It is based on the four following lemmas. Lemma 1 allows to dominate uniformly the in-
tensity of (μn) and obtain the convergence of (μn) to a measure μ. Next, we have to prove
that μ satisfies the properties as claimed in the proposition. Lemma 2 controls the size of
the cells in the tessellations during the convergence. Coupled with Lemma 3, which guaran-
tees the local regularity of μ, we prove that μ satisfies the properties (i′), (ii), (iii), (iv). The
property (14) is obtained thanks to the last Lemma 4.

Lemma 1 There exists a constant C1 such that for every n in N
∗ and every Λ ∈ B(R2) we

have

Eμn(Γ
(1)(Λ)) ≤ C1λ(Λ).

Proof μn is obviously shift invariant. So, it is sufficient to prove that μn has a σ -finite mo-
ment uniformly bounded for n ∈ N

∗. To do this, we can use the reduced Campbell measure
of μn to identify the first moment. Since μn is the n-periodic Gibbs tessellation and the
energy can be written as in (11) we have

C(n)!
μ

n(1)
(dx, dγΛn) = e−En(x,γΛn )λΛn(dx)μn(1) (dγΛn) (15)

where the Campbell measure C(n)!
μ

n(1)
is defined on Λn ×M(Λn) by

C(n)!
μ

n(1)
(f ) =

∫

MD(R2)

∫

Λn

f (x, γΛn − δx)γ (dx)μn(1) (dγ ),

and En(x, γΛn) is the periodic energy of x in γΛn

En(x, γΛn) = En
Λn

(pn(γΛn + δx)) − En
Λn

(pn(γΛn)). (16)

In fact, we have

En
Λn

(pn(γ )) =
k∑

i=1

En(xi, δx1 + · · · + δxi−1) for every γ ∈ M(Λn) (17)

where γ = δx1 + · · · + δxn .
For the classical techniques concerning the calculus about the Campbell measure, we can

see for example [13]. In particular, we can find the equation (15) for the Campbell measure
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of a Gibbs state. As above, it is easy to show that |En(x, γΛn)| ≤ 2CM . So, thanks to (15),
the first moments of measures (μn)n∈N∗ are uniformly bounded by e2CMλ. The lemma is
proved for the constant C1 = e2CM . �

In [8], Corollary A2.6.V p. 607 gives a characterization for the relative compacity of a
set of radon measures on a locally compact space. A set (Γn) in M(Ē) is relatively compact
if

∀Λ ∈ B(E), ∃C > 0, ∀n ∈ N
∗, Γn(Λ) ≤ C.

In our case, thanks to Lemma 1 we have

∀Λ ∈ B(E), ∃C > 0, ∀n ∈ N
∗, Eμn(Γ (Λ)) ≤ C.

Consequently, the family of probability measures (μn) is uniformly tight in M(Ē). We can
extract a sub set (μϕ(n)) converging weakly in M(Ē) to a probability measure μ, this prob-
ability measure is clearly shift invariant.

Now, we have to prove some properties of this measure μ. Using the Skorokhod represen-
tation (see for example [4]) , we introduce some processes (Γ̃n)n∈N∗ which converge almost
surely to a process Γ̃ and such that μ (respectively μn) is the law of Γ̃ (respectively Γ̃n).
Therefore, it is easier to study μ through Γ̃ and (Γ̃n)n∈N∗ .

More precisely, there exists a probability space (Ω̃, F̃, P̃ ) and processes (Γ̃n)n∈N∗ , Γ̃

from Ω̃ to M(Ē) such that for every n ∈ N
∗ the law of Γ̃n (respectively Γ̃ ) is μn (respec-

tively μ). Moreover (Γ̃n) converges P̃ -almost surely to Γ̃ for the metric dM(Ē) (we will skip
until the end of the proof the notation μϕ(n); we will just write μn).

For the moment, the only Delaunay property of Γ̃n, which is kept for the limit Γ̃ , is (ii).
Let us begin with the analysis of Γ̃ with the following lemma.

Lemma 2 P̃ almost surely (Γ̃n) satisfies

∀R > 0, ∃A > 0, ∀n ∈ N
∗, ∀X = {x, y, z} ∈ Γ̃ (3)

n |x| ≤ R ⇒ max(|y|, |z|) ≤ A. (18)

Proof Let us suppose that (18) is false. This means that, with a strictly positive probability,

∃R > 0, ∀A > 0, ∃n ∈ N
∗, ∃X = {x, y, z} ∈ Γ̃ (3)

n |x| ≤ R and max(|y|, |z|) ≥ A.

In other words, there exists R > 0 and a subset of triangles (Xϕ(n))n∈N∗ such that for every
n ∈ N

∗ Xϕ(n) = {xϕ(n), yϕ(n), zϕ(n)} ∈ Γ̃ϕ(n), xϕ(n) ≤ R and the radius rϕ(n) of the circum-
scribed ball of Xϕ(n) goes to infinity. This proves the existence of a half plane in R

2 without
point for the limit process Γ̃ . But Γ̃ (B(0,R)) ≥ 1 since Γ̃ϕnB(0,R) ≥ 1 for every n ∈ N

∗.
There is a contradiction here because a stationary point process, having a half plane without
points, is necessary the process null. The lemma is proved. �

Now, thanks to this lemma, we know that Γ̃ satisfies the assumption (iii) P̃ -almost surely.
So, P̃ -almost surely, every edge in Γ̃ is contained in two triangles. So the convex hull of Γ̃ ,
〈Γ̃ 〉 has no boundary and is equal to R

2 or the empty set. It implies Γ̃ (1) is equal to 0 or has
no half plane without points. To prove (i), it must be shown that Γ̃ almost surely does not
have four points on a same circle. It is a direct consequence of the following lemma which
claims that the probability measure μ(1) is locally absolutely continuous with respect to π .

Lemma 3 μ(1) is locally absolutely continuous with respect to π .
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Proof Equation (15) and the domination of En(x, γΛn) by the constant 2CM imply for
every local bounded continuous function f and for n large enough,

C(n)!
μ

n(1)
(f ) ≤ e2CMλΛn ⊗ μn(1) (f ).

Let n goes to infinity we have

C !
μ(1) (f ) ≤ e2CMλ ⊗ μ(1)(f ).

So Cμ(1) is absolutely continuous with respect λ ⊗ μ. We deduce, thanks to a Theorem by
Glotzl (Theorem 1 [10]), μ(1) is a Gibbs point process for some potential. That implies the
local absolute continuity of μ(1) with respect to π . �

Thanks to this lemma we have many consequences for the process Γ̃ . First of all, we
validate that Γ̃ almost surely satisfies the property (i). Secondly, we show that every X ∈ Γ̃

is in E because, in principle, we know that X is in Ē . Moreover, the property (iv) is also
satisfied by Γ̃ . Concerning the last property in Proposition 3, it is a direct consequence of
this following lemma.

Lemma 4 There exists a constant C2 > 0 such that for every n in N
∗ and every Λ ∈ B(R2)

we have

Eμn(Γ
(1)(Λ)) ≥ C2λ(Λ).

Proof It is exactly the same proof as in Lemma 1. �

The proof of Proposition 3 is finished. �

Let us remark that we are not sure that μ(Γ (1) ∈ MD(R2)) = 1, but the definition of
Gibbs Delaunay tessellations implies this property. In fact, the good candidate for the Gibbs
Delaunay tessellation is the probability measure μ := μ(.|Γ (1) ∈ MD(R2)), we will see this
later.

Second step, the DLR equations:
The DLR equations (9) are essentially based on the continuity of the kernels (ΞΛ). It is

however easy to see that ΞΛ(., f ) is not continuous everywhere because the potential V is
not continuous and the Delaunay structure is not stable near a configuration having almost
four points on a same circle. To solve this problem, we prove only the continuity of the
kernels for μ-almost every Γ . Lemma 3 is crucial.

We begin to analyse the continuity of the kernels (ΞΛ) in Lemma 5. Next, to prove the
DLR equations, we introduce equilibrium equations (23) for the measures (μn) which are
inspired by the compatibility equations (8). Since (μn) are the periodic Gibbs tessellations
on (Λn), we have to define the periodic kernels (Ξn

Λ). Afterwards, we have to control these
equations when n goes to infinity which is equivalent to Λ′ goes to R

2 in (8). We directly
obtain the DLR equations.

Let us give a precise definition of the set for which we have the continuity of the kernels.
Let (Δm)m∈N∗ a set of bounded sets in R

2 growing to R
2 and having smooth boundaries
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(∂Δm)n∈N∗ ; for example we can take Δm = B(0,m). We define

M =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Γ ∈ M(E) such that
(a) Γ = 0 or Γ ∈ M∞

D (E)

(b) ∀m ∈ N
∗, Γ (1)(∂Δm) = 0

(c) ∀m ∈ N
∗, any X ∈ Γ (2) is not tangential to ∂Δm

(d) V is continuous for every subconfiguration Γ ′ in Γ

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (19)

We note M∗ = M − {0}. Thanks to Proposition 3, Lemma 3 and the assumption (R) we
claim

μ(M) = 1.

We want to prove the continuity of the kernels ΞΔm(Γ, .) at each Γ in M, so we have to
extend the definition of ΞΛ(Γ, .) for Γ = 0. We put ΞΛ(0, .) = δ0.

Lemma 5 For every m ∈ N
∗, for every bounded continuous function f from M(E) to R,

the function from MD(E) ∪ {O} to R: Γ −→ ΞΔm(Γ,f ) is continuous at every Γ ∈ M.

Proof Let m be in N
∗ and f a bounded continuous function from M(E) to R.

Beginning with the trivial case where Γ = 0. Let (Γn) be a set of elements in MD(E)

such that Γn goes to 0 when n goes to infinity. Then, for n large enough, Γ (1)
n has no

point in Δm. So, SΔm(Γn) is empty. Therefore ΞΔm(Γn, .) = δΓn and limn→∞ ΞΔm(Γn,f ) =
ΞΔm(0, f ) = f (0).

Now, let us suppose Γ ∈ MD(E) ∩ M∗. It is easy to see that the function from MD(E)

to M(E): Γ −→ ΓΔc
m

is continuous at each Γ ∈ M∗ because there is no boundary problem
thanks to the points b) and c). Let us not forget that the topology on M(E) is induced by the
metric dM(E). We deduce that the function from MD(E) ×M(R2) to MD(E): (Γ, γ ) −→
Υ (Γ,γ,Δm) is continuous for every Γ ∈ M∗ and for π -almost every γ ∈ M(R2). Now,
thanks to the assumption d) in the definition of M, we claim that the function from MD(E)×
M(R2) to MD(E): (Γ, γ ) −→ EΔm(Υ (Γ,γ,Δm)) is continuous at every Γ ∈ M∗ and π -
almost every γ ∈ M(R2).

We can now see the continuity of the kernels (ΞΔm)n∈N∗ precisely. Let us remember the
definition: for every Γ ∈ M∞

D (E) and every test function f from M(E) to R we have

ΞΛ(Γ,f ) =
∫

M(R2)

f (Υ (Γ,γ,Λ))
1

ZΛ(Γ )
e−EΛ(Υ (Γ,γ,Λ))πSΛ(Γ )(dγ ),

where ZΛ(Γ ) is

ZΛ(Γ ) =
∫

M(R2)

e−EΛ(Υ (Γ,γ,Λ))πSΛ(Γ )(dγ )

if SΛ(Γ ) �= ∅ and otherwise

ΞΛ(Γ,f ) = f (Γ ).

Let (Γn) be a set of elements in MD(E) such that (Γn) goes to Γ when n goes to infinity. Let
us show that ΞΔm(Γn,f ) goes to ΞΔm(Γ,V ). If SΔm(Γ ) = ∅ the proof is the same as above
in the case Γ = 0. Otherwise, thanks to the dominated convergence Theorem by Lebesgue,
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we have

lim
n→∞ZΔm(Γn) = lim

n→∞

∫

M(R2)

e−EΔm(Υ (Γn,γ,Δm))πSΔm (Γn)(dγ )

=
∫

M(R2)

e−EΔm(Υ (Γ,γ,Δm))πSΔm (Γ )(dγ )

= ZΔm(Γ ).

The uniform domination comes from the uniform stability constant for the potential V (see
the beginning of the proof in Proposition 3). The simple convergence of the function inside
the integral comes from the continuity of the function EΔm(Υ (., .,Δm)). With the same
argument, it is easy to see that

lim
n→∞ΞΔm(Γn,f ) = ΞΔm(Γ,f ).

The lemma is consequently proved. �

Since the measures (μn) are the periodic Gibbs Delaunay tessellations on Λn, let us give
an equilibrium equation for μn. We have to introduce some notations. We note for every
Γ ∈ MD(E), every Λ ∈ B(R2)

Γ n
Λc =

∑

X∈Γ

∃Y∈Γ (3), X⊂Y

〈Y 〉∩pn(Λ)c �=∅

δX (20)

where pn(Λ) is the set
⋃

x∈Λ{x + h,h ∈ 2nZ
d}. Let us define the set Sn

Λ(Γ ) in R
2

Sn
Λ(Γ ) = R

2\
( ⋃

X∈(Γ n
Λc )(3)

B̄(X)

)
(21)

and the function Υ n

Υ n: MD(E) ×M(R2) × B(R2) −→ MD(E),

(Γ, γ,Λ) −→ (Γ
(1)

Sn
Λ(Γ )c

+ γSn
Λ(Γ )).

If Γ
(1)

Sn
Λ(Γ )c

+ γSn
Λ(Γ ) is not in MD(R2), we put Υ n(Γ,γ,Λ) = Γ .

Now, we define the following kernels Ξn
Λ on M∞

D (E)×P(M∞
D (E)). For every n-periodic

Γ in M∞
D (E) and every test function f from M∞

D (E) to R we define

Ξn
Λ(Γ,f ) =

∫

M(R2)

f (Υ n(Γ,pn(γ ),Λ))
1

Zn
Λ(Γ )

× e−En
Λ(Υ n(Γ,pn(γ ),Λ))πSΛ(Γ )∩Λn(dγ ), (22)

where Zn
Λ(Γ ) is the normalization constant

Zn
Λ(Γ ) =

∫

M(R2)

e−En
Λ(Υ n(Γ,pn(γ ),Λ))πSΛ(Γ )∩Λn(dγ ).
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The kernels (Ξn
Λ)Λ∈B(R2) are just the periodic version of the kernels (ΞΛ)Λ∈B(R2). Thanks

to these kernels, we can write the following equilibrium equation for μn which is just the
compatibility of the kernels (Ξn

Λ)Λ∈B(R2) on Λn (see Proposition 2 for a similar proof). For
every bounded set Λ in B(R2) and every bounded continuous function f from MD(E) to R

we have
∫

MD(E)

f (Γ )μn(dΓ ) =
∫

MD(E)

∫

MD(E)

f (Γ ′)Ξn
Λ(Γ,dΓ ′)μn(dΓ ). (23)

Let us now prove the DLR equations (9) for μ with Λ = Δm, m ∈ N
∗. In the following

limits, we use both indirectly and clearly the locality of the Delaunay tessellation.

∫

MD(E)

f (Γ )μ(dΓ )

= lim
n→∞

∫

MD(E)

f (Γ )μn(dΓ )

= lim
n→∞

∫

MD(E)

∫

MD(E)

f (Γ ′)Ξn
Δm

(Γ,dΓ ′)μn(dΓ )

= lim
n→∞

∫

MD(E)

ΞΔm(Γ,f )μn(dΓ )

+ lim
n→∞

∫

MD(E)

(Ξn
Λm

(Γ,f ) − ΞΔm(Γ,f ))μn(dΓ )

=
∫

MD(E)

ΞΔm(Γ,f )μ(dΓ ) + lim
n→∞

∫
(Ξn

Δm
(Γ̃n, f ) − ΞΔm(Γ̃n, f ))dP̃ . (24)

In the last equality, the first part comes from Lemma 5 and the fact μ(M) = 1. The sec-
ond part comes from the representation of the weak convergence introduced just before
Lemma 2.

To prove that the second part of the last equality is null, let us show that the function
Ξn

Δm
(Γ̃n, f ) − ΞΔm(Γ̃n, f ) goes almost surely to 0, when n goes to infinity. The dominated

convergence Theorem completes the proof since this function is dominated by 2‖f ‖∞.
If (Γ̃n) goes to 0, then both kernels tested on f go to f (0) and the difference goes to 0.

Now, if (Γ̃n) goes to Γ̃ �= 0. Since f is continuous for the metric dM(E), f is the uniform
limit of a set of local continuous functions. So, it is sufficient to prove the convergence for
a local function f . Since Γ̃n goes to Γ̃ �= 0 when n goes to infinity, then for n large enough,
the kernels Ξn

Δm
(Γ̃n, f ) and ΞΔm(Γ̃n, f ) are equal; the difference is null. So, the equality

(24) becomes

∫

MD(E)

f (Γ )μ(dΓ ) =
∫

MD(E)

ΞΔm(Γ,f )μ(dΓ ). (25)

It is exactly the equation DLR (9) for Λ = Δm. To obtain the equilibrium equations (9) for
any Λ, it is just a consequence of the DLR equation (25) for some Δm containing Λ and the
compatibility of kernels (8). Now, let us point out that μ is not a Gibbs Delaunay tessellation
because μ(MD(E)) = μ(Γ �= 0) may be not equal to 1. Thanks to Proposition 3, we know
that μ(Γ �= 0) > 0. The Gibbs Delaunay tessellation is in fact the measure μ = μ(.|Γ �= 0).
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Let us verify that μ satisfies the DLR equations (9). From (25)
∫

MD(E)

f (Γ )(μ(dΓ |Γ �= 0)μ(Γ �= 0) + μ(dΓ |Γ = 0)μ(Γ = 0))

=
∫

MD(E)

ΞΛ(Γ,f )(μ(dΓ |Γ �= 0)μ(Γ �= 0) + μ(dΓ |Γ = 0)μ(Γ = 0)).

If we expand, that becomes

μ(Γ �= 0)

∫

MD(E)

f (Γ )μ(dΓ ) + f (0)μ(Γ = 0)

= μ(Γ �= 0)

∫

MD(E)

ΞΛ(Γ,f )μ(dΓ ) + f (0)μ(Γ = 0)

and so
∫

MD(E)

f (Γ )μ(dΓ ) =
∫

MD(E)

ΞΛ(Γ,f )μ(dΓ ).

Theorem 1 is proved. �

4 Existence of Gibbs Tessellations with Geometric Hardcore Conditions

In this part, we propose introducing a geometric hardcore condition on the potential V for
small and large cells. Indeed, we put the energy of a cell equal to plus infinity if this cell is
small or large enough. Let us remark that the hardcore condition about the small triangle is
classical because it is almost equivalent to the hardcore condition between the points (hard-
ball condition) but the second condition about the large cells is absolutely not a classical
point hardcore condition. It depends on the geometry of the tessellation and is not heredi-
tary. It means that the following situation is possible: EΛ(γ ) = +∞ and EΛ(γ + δx) < ∞.
Moreover, the interaction is not quasilocal because it goes to infinity when the size of the
cell goes to infinity.

The Gibbs Delaunay tessellations, which we construct in this section, do not have (with
probability one) small and large cells. It is an interesting result for the stochastic geometry
point of view. Indeed, in [15], the author proposes a connection between the Gibbs point
process and the Delaunay Tessellations to control the size of cells. This is exactly what we
do by constructing more regular infinite random Delaunay tessellations.

Let us now introduce precisely the hardcore interaction for the potential V .

(HC): The hardcore condition
There exists strictly positive constants r and R such that for all X in Sp(E)

V (X) = +∞ ⇐⇒ X is an edge with a length smaller or equal to r

or X is a triangle with the radius of B(X) greater or equal to R.

In the following theorem we suppose that V satisfies (HC) and (R) and there is no con-
tradiction. Indeed, (HC) implies that V is discontinuous for every X in E (2) having a length
equal to r , or every X in E (3) with the radius of B(X) equal to R. In fact, it is not incompat-
ible with (R) because these configurations π̄ -almost surely do not appear.

Now let us give the theorem with a geometric hardcore interaction.



146 D. Dereudre

Theorem 2 There exists a Gibbs Delaunay tessellation for a potential V which satisfies
(TI), (HC), (B) and (R) with R > r .

Proof Let us begin by justifying that the kernels (ΞΛ)Λ∈B(R2) are well defined. The problem
is to prove that 0 < ZΛ(Γ ) < +∞ for every Γ ∈ M∞

D (E) such that SΛ(Γ ) �= ∅. By con-
struction, SΛ(Γ ) is an opened set in R

2. Moreover the condition (HC) implies that the set
M∞

D (E) is locally an open set in M(E). It means that for every configuration Γ ∈ M∞
D (E)

we can locally perturb the configuration Γ such that this perturbation is still in M∞
D (E). So,

it is clear that ZΛ(Γ ) > 0.
Now let us prove the second inequality by using a classical stability argument. Let Γ ′

be in ∈ MD(E). Either EΛ(Γ ′) = +∞ and so e−EΛ(Γ ′) = 0, or Γ ′ ∈ M∞
D (E) and, thanks to

the assumption (HC), we prove that every triangle X in Γ ′(3) has a radius of B(X) smaller
than R and has the lengths of its sides greater than r . This implies the existence of a uniform
minimal angle α0 > 0 for every triangle in Γ ′(3). With the same argument, in the proof of
the boundness of ZΛ(Γ ) in Theorem 1, we conclude there exists a constant CΛ such that
|EΛ(Γ ′)| < CΛΓ ′(1)(Λ). The potential is stable and so ZΛ(Γ ) < +∞.

Now, the scheme of the proof of Theorem 2, is exactly the same as in Theorem 1. We
just have to prove that the Lemmas 1, 3 and 4 are still true in the case where V satisfies (TI),
(HC), (B) and (R). It can be seen that the Lemmas 1, 4 are obviously true if (HC) is satisfied.

The difficulty is essentially concentrated in the following Lemma 6 which is the analogue
of Lemma 3. Since the interaction V is not hereditary, we can not define the energy of point
x in a configuration γ . Therefore, the classical tools for Gibbs point processes, can not be
used here. The proof in Lemma 3 is based on the Campbell measure via Glotzl’s Theorems.
So, in this section, we have to make a direct and more complicate proof of the local absolute
continuity of μ.

Lemma 6 Under the assumptions (TI), (R), (B) and (HC) with (R > r), μ(1) is locally
absolutely continuous with respect to π .

Proof The proof of this lemma is long and technical. So let us begin by giving an outline.
Let Λ be a bounded set in R

2. We want to show that the projection of μ on Λ is absolutely
continuous with respect to λ. Thanks to Lemma 7 and some calculus on the kernels, we have
for every regular function f and every ε > 0

∫
f (Γ

(1)
Λ )μ(dΓ ) ≤ K

(
1

ε

∫
f (γ )πλ(dγ ) + ε‖f ‖∞

)
, (26)

where K is a fixed constant. So, we can deduce easily that for every Borel set A in M(Λ)

such that πΛ(A) = 0, we have μ(1)(A) = 0. Using the Radon Nikodym Theorem, we can
complete the proof. Now let us give the precise calculus.

Let Λ and Λ′ be bounded sets in R
2 such that Λ ⊂ Λ′ and such that

∀x ∈ Λ, ∀y ∈ Λ′c |x − y| > 2R. (27)

Let fΛ be a bounded continuous function from MD(R2) to R measurable for the sigma field
of M(Λ). Since (μn) converges weakly to μ (see Proposition 3), we have

∫

M(Ē)

fΛ(Γ (1))μ(dΓ ) = lim
n→∞

∫

M∞
D(E)

fΛ(Γ (1))μn(dΓ ). (28)
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For each n ∈ N
∗, μn is a solution of the periodic equilibrium equation (23). So

∫

M∞
D(E)

fΛ(Γ (1))μn(dΓ ) =
∫

M∞
D(E)

∫

M∞
D(E)

fΛ(Γ ′(1))Ξn
Λ′(Γ, dΓ ′)μn(dΓ ). (29)

Now we want to substitute Ξn
Λ′ with ΞΛ′ . Using the same techniques as with equation (24),

we find
∫

M(E)

fΛ(Γ (1))μ(dΓ ) = lim
n→∞

∫

M∞
D(E)

∫

M∞
D(E)

fΛ(Γ ′(1))ΞΛ′(Γ, dΓ ′)μn(dΓ )

= lim
n→∞

∫

Ω̃

∫

M∞
D(E)

fΛ(Γ ′(1))ΞΛ′(Γ̃n, dΓ ′)dP̃ . (30)

To simplify the calculus, we fix, for the moment, P̃ -a.s. (Γ̃n) converging to Γ̃ . We have

∫

M∞
D(E)

fΛ(Γ ′(1))ΞΛ′(Γ̃n, dΓ ′)dP̃

=
∫

MD(R2)

fΛ(γ )
e−EΛ′ (Υ (Γ̃n,γ,Λ′))

ZΛ′(Γ̃n)
πSΛ′ (Γ̃n)(dγ ) (31)

where

ZΛ′(Γ̃n) =
∫

MD(R2)

e−EΛ′ (Υ (Γ̃n,γ,Λ′))πSΛ′ (Γ̃n)(dγ ).

Let us now introduce both following sets included in M(SΛ′(Γ̃n))

K(Γ̃n) = {γ ∈ M(SΛ′(Γ̃n)) such that EΛ′(Υ (Γ̃n, γ,Λ′)) < +∞} (32)

and for ε > 0

Kε(Γ̃n) =
{
γ ∈ K(Γ̃n) such that

∫

M(Λ)

1K(Γ̃n)(γΛ′−Λ + γ ′)πΛ(dγ ′) ≥ ε

}
. (33)

K(Γ̃n) is the support of Γ ′(1) in SΛ′(Γ̃n) under the probability measure ΞΛ′(Γ̃n, .). Kε(Γ̃n)

represents the good configurations γ in K(Γ̃n). Indeed, these configurations have a subset
in M(Λ), with probability bigger than ε under πΛ, to spread out. We have the following
upperboundedness which controls the difference between K(Γ̃n) and Kε(Γ̃n).

∣∣∣∣
∫

MD(R2)

fΛ(γ )
e−EΛ′ (Υ (Γ̃n,γ,Λ′))

ZΛ′(Γ̃n)
πSΛ′ (Γ̃n)(dγ )

−
∫

MD(R2)

fΛ(γ )1Kε(Γ̃n)(γ )
e−EΛ′ (Υ (Γ̃n,γ,Λ′))

ZΛ′(Γ̃n)
πSΛ′ (Γ̃n)(dγ )

∣∣∣∣

≤
∫

MD(R2)

∣∣∣∣fΛ(γ )
e−EΛ′ (Υ (Γ̃n,γ,Λ′))

ZΛ′(Γ̃n)

∣∣∣∣(1 − 1Kε(Γ̃n)(γ ))πSΛ′ (Γ̃n)(dγ )
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≤ ‖fΛ‖∞
supγ∈K(Γ̃n) e

−EΛ′ (Υ (Γ̃n,γ,Λ′))

infγ∈K(Γ̃n) e
−EΛ′ (Υ (Γ̃n,γ,Λ′))

πSΛ′ (Γ̃n)(K(Γ̃n) −Kε(Γ̃n))

πSΛ′ (Γ̃n)((K(Γ̃n))

≤ e2CΛ′ ‖fΛ‖∞
πSΛ′ (Γ̃n)(K(Γ̃n) −Kε(Γ̃n))

πSΛ′ (Γ̃n)((K(Γ̃n))
(34)

where CΛ′ is an uniform bound for the function |EΛ′(Υ (Γ̃n, .,Λ
′))| on K(Γ̃n), which exists

thanks to the assumptions (HC) and (B). CΛ′ does not depend on (Γ̃n). To control the last
term in the inequality (34), we have the following lemma.

Lemma 7 There exists a constant ρ > 0 such that for every ε > 0

πSΛ′ (Γ̃n)(K(Γ̃n) −Kε(Γ̃n))

πSΛ′ (Γ̃n)((K(Γ̃n))
≤ ρε.

Proof Let γ be in KΛ′(Γ̃n) − Kε
Λ′(Γ̃n). The problem of such a configuration is that the

points of γ inside Λ are almost frozen in the sense where πΛ(γ ′
Λ|γΛ′−Λ + γ ′

Λ ∈ K(Γ̃n)) ≤ ε.
We want to construct a new configuration which is equal to γΛ′−Λ plus a second part γ̂ =
δx̂1 +· · ·+ δx̂l , such that this configuration γΛ′−Λ + γ̂ is in Kε(Γ̃n). Let us define a function
from K(Γ̃n) to M(SΛ′(Γ̃n)): γ �−→ γ̂ = ŷ1 + · · · + ŷl such that for all (hi)1≤i≤l in B(0, δ

3 )l

we have

γΛ′−Λ + δŷ1+h1 + · · · + δŷl+hl
is in K(Γ̃n), (35)

where δ is equal to R−r
2 . Let us remark that, if (35) is satisfied, γΛ′−Λ + γ̂ is in Kε(Γ̃n) for ε

small enough. How can this configuration γ̂ be constructed?
In fact, we construct γ̂ recursively. We fix γ̂ = 0 and we test if γ̂ satisfies the following

assumption (H)

∀x ∈ SΛ′(Γ̃n), Υ (Γ̃n, γΛ′−Λ + γ̂ ,Λ′)(1)(B(x, r + δ)) > 0.

If this is the case, we stop the recursive process. If this is not the case, we choose an arbi-
trary point x̂ in SΛ′(Γ̃n), such that Υ (Γ̃n, γΛ′−Λ + γ̂ ,Λ′)(1)(B(x, r + δ)) = 0, and we put
γ̂ := γ̂ + δx̂ . Now, we test the assumption (H) again for this new γ̂ . If (H) is true, we stop
here otherwise we choose another point x̂ ′ as above and we put γ̂ := γ̂ + δx̂′ . We go on
like this until the process stops which is always the case since SΛ′(Γ̃n) is bounded and the
minimal distance between two points in γ̂ is larger than r . The application γ → γ̂ must be
measurable, so we choose the point x̂ with a measurable function. We can use, for example,
the lexicographic order in R

2.
Now let us prove that (γ, γ̂ ) satisfies (35). Let us write γ̂ = δŷ1 + · · · + δŷl and for all

(hi)1≤i≤l in B(0, α
3 )l , we note γ ′ = γΛ′−Λ + δŷ1+h1 +· · ·+ δŷl+hl

. For any distinct points x, y

in Υ (Γ̃n, γ
′,Λ′)(1), the norm |x − y| > r because γ is in K(Γ̃n) and (H). Moreover, since γ̂

satisfies (H), any ball B(x,R) where x is in SΛ′(Γ̃n) contains some points of Υ (Γ̃n, γ
′,Λ′).

It is the same if x is not in SΛ′(Γ̃n) because Γ̃n is in M∞
D (E) and (27). We deduce that any

triangle X in Υ (Γ̃n, γ,Λ′)(3) has the radius of B(X) strictly lower than R. So, Υ (Γ̃n, γ
′,Λ′)

is in K(Γ̃n).
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Now, we can begin the domination of πSΛ′ (Γ̃n)(K(Γ̃n) −Kε(Γ̃n)).

πSΛ′ (Γ̃n)(K(Γ̃n) −Kε(Γ̃n))

= e−λ(SΛ′ (Γ̃n)−Λ)

k0∑

k=0

1

k!
∫

· · ·
∫

(SΛ′ (Γ̃n)−Λ)k

×
[∫

M(Λ)

1K(Γ̃n)−Kε(Γ̃n)(δx1 + · · · + δxk
+ γ ′)πΛ(dγ ′)

]
dx1 · · ·dxk, (36)

where k0 is a bound for the number of points of elements in K(Γ̃n). For (xi)1≤i≤k in
SΛ′(Γ̃n) − Λ and γ ′ in M(Λ) such that η = δx1 + · · · + δxk

+ γ ′ is in KΛ′(Γ̃n), we note
η̂ = δŷ1 +· · ·+ δŷl defined above. Let us point out that (ŷi)1≤i≤l depends only on x1, . . . , xk .
So, we have from the definition of Kε(Γ̃n) the following domination

∫

M(Λ)

1K(Γ̃n)−Kε(Γ̃n)(δx1 + · · · + δxk
+ γ ′)πΛ(dγ ′)

≤ ε1K(Γ̃n)(δx1 + · · · + δxk
+ δŷ1 + · · · + δŷl),

≤ ε

(
π

(
α

3

)2)−l ∫

B(ŷ1, α
3 )

· · ·
∫

B(ŷl ,
α
3 )

× 1K(Γ̃n)(δx1 + · · · + δxk
+ δy1 + · · · + δyl)dy1 . . . dyl

≤ ε

(
π

(
α

3

)2)−k0 k0∑

l=0

∫
· · ·

∫

(SΛ′ (Γ̃n))l
1K(Γ̃n)

× (δx1 + · · · + δxk
+ δy1 + · · · + δyl)dy1 . . . dyl. (37)

Compiling (36) and (37), we find

πSΛ′ (Γ̃n)(K(Γ̃n) −Kε(Γ̃n))

≤ ε

(
π

(
α

3

)2)−k0

e−λ(SΛ′ (Γ̃n)−Λ)

×
k0∑

l=0

k0∑

k=0

1

k!
∫

. . .

∫

(SΛ′ (Γ̃n))k+l

1K(Γ̃n)

× (δx1 + · · · + δxk
+ δy1 + · · · + δyl)dx1 . . . dxkdy1 . . . dyl

≤ ρεπSΛ′ (Γ̃n)((KΛ′(Γ̃n)), (38)

where ρ is a strictly positive constant. Lemma 7 is proved. �
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Now, we can prove the inequalities (26) which are expected. Thanks to Lemma 7 and
inequality (34), equality (31) becomes

∫

M∞
D(E)

fΛ(Γ ′(1))ΞΛ′(Γ̃n, dΓ ′)

≤
∫

MD(R2)

fΛ(γ )1Kε(Γ̃n)(γ )
e−EΛ′ (Υ (Γ̃n,γ,Λ′))

ZΛ′(Γ̃n)
πSΛ′ (Γ̃n)(dγ ) + ρe2CΛ′ ‖fΛ‖∞ε. (39)

Since Λ ⊂ SΛ′(Γ̃n) and πSΛ′ (Γ̃n) = πΛ πSΛ′ (Γ̃n) we have

∫

M∞
D(E)

fΛ(Γ ′(1))ΞΛ′(Γ̃n, dΓ ′)

≤
∫

MD(R2)

fΛ(γ )1Kε(Γ )(γΛ + Γ
(1)

SΛ′ (Γ )−Λ)

× e
−EΛ′ (Υ (Γ,γΛ+Γ

(1)
S

Λ′ (Γ )−Λ
,Λ′))

∫
MD(R2)

e
−EΛ′ (Υ (Γ,γ ′

Λ+Γ
(1)
S

Λ′ (Γ )−Λ
,Λ′))

πΛ(dγ ′
Λ)

πΛ(dγΛ)ΞΛ′(Γ̃n, dΓ )

+ ρe2CΛ′ ‖fΛ‖∞ε.

When γΛ + Γ
(1)

SΛ′ (Γ )−Λ is in Kε(Γ ) then
∫
MD(R2)

e
−EΛ′ (Υ (Γ,γ ′

Λ+Γ
(1)
S

Λ′ (Γ )−Λ
,Λ′))

πΛ(dγ ′) ≥
εe−CΛ′ . So,

∫

Ω̃

∫

M∞
D(E)

fΛ(Γ ′(1))ΞΛ′(Γ̃n, dΓ ′)dP̃

≤
∫

MD(R2)

fΛ(γ )
e2CΛ′

ε
πΛ(dγ ) + ρe2CΛ′ ‖fΛ‖∞ε. (40)

From (40) and (30), we deduce

∫

M(E)

fΛ(Γ (1))μ(dΓ ) ≤
∫

MD(R2)

fΛ(γ )
e2CΛ′

ε
πΛ(dγ ) + ρe2CΛ′ ‖fΛ‖∞ε,

which is inequality (26) with the precise constants. Thanks to a monotone class argument,
for every A in the σ -fields of M(Λ), we have μ(1)(A) ≤ e2CΛ′ ( πΛ(A)

ε
+ ρε). If πΛ(A) = 0

and if ε goes to 0, we have μ(A) = 0. So, μ is locally absolutely continuous with respect to
πΛ. Lemma 6 is proved. �

Now, using Lemma 6 and the lemmas similar to 1 and 4, we prove Theorem 2. �

Let us suppose we want to construct an infinite random Delaunay tessellation for which
each angle is bigger than a fixed angle α0. We propose two approaches. In the first, we can
consider an interaction potential which is equal to plus infinity if, and only if, a triangle has a
minimal angle lower than α0. With our method, it is possible to construct a Gibbs Delaunay
tessellation with this potential. The proof is exactly the same as in Theorems 1 and 2. We
just have to prove that the Lemmas 1, 3 and 4 are still true. The calculus are long and
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complicated and we only have the result for α0 small enough. In a second easier approach,
we use Theorem 2 and fix r and R such that any triangle, with the edges larger than r and
the radius of the circumscribed ball lower than R, has necessary the minimal angle bigger
than α0 (for example, r = 1 and R = 1

2 sin(α0)
). In Theorem 2, the only assumption on r and

R is R > r . So, the only condition on α0 is α0 < π
6 .

To finish this paper in conclusion, we would like to say that it is possible to extend
our results to many different models of tessellations. It is however difficult to give general
results because the interaction depends very strongly on the nature of the tessellations. It
is necessary to adapt the results to the models. However, for the Voronoi tessellations, the
results can be transposed directly thanks to the classical duality.

Acknowledgements The author thanks Zessin for inspiration and valuable discussions. The author is grate-
ful to Schreiber for the conversation which inspired some techniques in this paper. The author gratefully
acknowledges the referees for helpful comments.

References

1. Arak, T.: On Markovian random fields with finite number of values. In: 4th USSR-Japan Symposium on
Probability Theory and Mathematical Statistics, Abstract of Communications, Tbilisi (1982)

2. Arak, T., Surgailis, D.: Markovian fields with polygonal realisations. Probab. Theory Relat. Fields 80,
543–579 (1989)

3. Arak, T., Surgailis, D.: Consistent polygonal fields. Probab. Theory Relat. Fields 89, 319–346 (1989)
4. Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1999)
5. Bertin, E., Billiot, J.M., Drouilhet, R.: Spatial Delaunay Gibbs point process. Commun. Stat.-Stoch.

Models 15(2), 181–199 (1999)
6. Bertin, E., Billiot, J.M., Drouilhet, R.: Existence of Delaunay pairwise Gibbs point process with super-

stable component. J. Stat. Phys. 95(3–4), 719–744 (1999)
7. Bertin, E., Billiot, J.M., Drouilhet, R.: Existence of nearest-neighbours spatial Gibbs models. Adv. Appl.

Probab. (SGSA) 31, 895–909 (1999)
8. Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Processes, vol. I, 2nd edn. Springer,

Berlin (2005)
9. Georgii, H.-O.: Canonical Gibbs Measures. Lecture Notes in Mathematics, vol. 760. Springer, Berlin

(1979)
10. Glötzl, E.: Lokale Energien und Potentiale für Punktprozesse. Math. Nachr. 96, 195–206 (1980)
11. Matthes, K., Kerstan, J., Mecke, J.: Infinitely Divisible Point Process. Wiley, New York (1978)
12. Moller, J.: Random Tessellation. Wiley, New York (1978)
13. Nguyen, X.X., Zessin, H.: Integral and differential characterizations of the Gibbs process. Math. Nachr.

88, 105–115 (1979)
14. Preston, C.: Random Fields. Lecture Notes in Mathematics, vol. 714. Springer, Berlin (1976)
15. Ripley, B.: Modeling spatial patterns. J. R. Stat. Soc. B 39, 172–212 (1977)
16. Ruelle, D.: Statistical Mechanics. Rigorous Results. Benjamin, New York (1969)
17. Ruelle, D.: Superstable interactions in classical statistical mechanics. Commun. Math. Phys. 18, 127–159

(1970)
18. Schreiber, T.: Mixing properties of polygonal Markov fields in the plane. Preprint 18 of Faculty and

Computer Science of the Nicolaus Copernicus University (2003)
19. Zahle, M.: Random cell complexes and generalised sets. Ann. Probab. 16, 1742–1766 (1966)
20. Zessin, H.: Lokale Energien und Potentiale für Punktprozesse. Math. Nachr. 96, 195–206 (1980)
21. Zessin, H.: Specific index and curvature for random simplicial complexes. Inst. Math. Natl. Acad. Sci.

Armenia 37(1), 64–81 (2002)


	Gibbs Delaunay Tessellations with Geometric Hardcore Conditions
	Abstract
	Introduction
	Definitions and Notations
	State Spaces
	Interaction
	The Reference Measure and the Local Specifications

	Existence of Gibbs Delaunay Tessellations without Hardcore Condition
	Existence of Gibbs Tessellations with Geometric Hardcore Conditions
	Acknowledgements

	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


